Vận dụng mô hình Toulmin và suy luận tương tự trong dạy học nội dung “Phương trình mặt cầu” (Toán 12)
Tóm tắt
In the context of current educational innovation, developing students' mathematical thinking and reasoning competencies is considered one of the key goals of the 2018 General Education Program for Mathematics. Reasoning capacity not only helps students solve problems logically but also analyze, evaluate and apply mathematical knowledge in many different situations. The study proposes a teaching process that applies the Toulmin Argumentation model (TAM) combined with analogical reasoning and illustrates this process in teaching the content “Spherical equations” (Math 12). Although not yet verified by experiment, the proposed teaching process provides math teachers with a theoretical foundation to design teaching activities towards developing students' mathematical reasoning competency. The application of the TAM combined with analogical reasoning not only contributes to diversifying teaching methods but also creates conditions for students to approach mathematical knowledge in a profound and systematic way.
Tài liệu tham khảo
Bộ GD-ĐT (2018). Chương trình giáo dục phổ thông môn Toán (ban hành kèm theo Thông tư số 32/2018/TTBGDĐT ngày 26/12/2018 của Bộ trưởng Bộ GD-ĐT).
Daugherty, J., & Mentzer, N. (2008). Analogical reasoning in the engineering design process and technology education applications. Journal of Technology Education, 19(2), 7-21.
Dwirahayu, G., Mubasyiroh, S. M., & Mas’ud, A. (2017). The effectiveness of teaching with analogy on students’ mathematical representation of derivative concept. In Proceedings of the International Conference on Education in Muslim Society (ICEMS 2017) (pp. 57-60). Atlantis Press.
Freeley, D. G., & Steinberg, D. L. (2009). Argumentation and debate: Critical thinking for reasoned decision making (12th ed.). Cengage Learning.
Gentner, D. (1983). Structure‐mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170. https://doi.org/10.1207/s15516709cog0702_3
Glynn, S. M. (1994). Teaching science with analogy: A strategy for teachers and textbook authors (Reading Research Report No. 15). National Reading Research Center, Office of Educational Research and Improvement.
Govier, T. (2010). A practical study of argument (7th ed.). Cengage Learning.
Groth, R. E., & Follmer, D. J. (2021). Challenges and benefits of using Toulmin’s argumentation model to assess mathematics lesson study debriefing sessions. Investigations in Mathematics Learning, 13(4), 338-353. https://doi.org/10.1080/19477503.2021.1989188
Herrick, J. A. (2019). Argumentation: Understanding and shaping arguments (3rd ed.). Strata Publishing.
Karbach, J. (1987). Using Toulmin's model of argumentation. Journal of Teaching Writing, 6(01), 81-92.
Nuridah, E. R., & Amir, M. F. (2023). Analogical Reasoning in Solving Indirect Problem-Based Area Problems. Jurnal Matematika Dan Pendidikan Matematika, 8(4), 1305-1320.
O'Keefe, D. J. (2016). Persuasion: Theory and Research (3rd ed.). SAGE Publications, Inc.
Ramage, J. D., Bean, J. C., & Johnson, J. (2010). Writing arguments: A rhetoric with readings (8th ed.). Pearson Education.
Toulmin, S. (1958). The uses of argument. Cambridge University Press, UK.
Toulmin, S. (2003). The uses of argument. Cambridge University Press, UK.
Verderber, R. F., Verderber, K. S., & Sellnow, D. D. (2010). Communicate (13th ed.). Wadsworth Publishing Company.
Tải xuống
Đã Xuất bản
Cách trích dẫn
Số
Chuyên mục
Giấy phép
Tác phẩm này được cấp phép theo Ghi nhận tác giả của Creative Commons Giấy phép quốc tế 4.0 .









